「ハミルトニアン」を含む日記 RSS

はてなキーワード: ハミルトニアンとは

2023-02-13

あー難しい。洋書なんか読めねーよ。

ネットに出回ってる入門と謳う詐欺pdfなんて教育的配慮がなさすぎて読めたもんじゃねー。

いきなり断りなくハミルトニアンとか波動関数とか使うんじゃねーよ。全然納得感がなくてこれじゃただの暗記になってしまう。

なんでその局面でそういう難しい概念を使おうと言う発想になるのかから説明してほしい。なぜその概念が正しく利用できることについてもたとえ厳密でなくてもいいからなるほどと思える説明してほしいものだ。

式が単なる記号の羅列でははなく意味をもって立ち現れてくるような説明をしてほしいんだよね。

イーマ物理物理のカギしっぽ学研だかがやってる高校から理論物理みたいな解説理想なんだが結晶学や固体物理学についてはそういうとこの理念が宿ったサイト全然ねえ

2023-01-07

anond:20230107185201

たぶん解析力学勉強してないと思うので、いきなり量子力学をやるとまずハミルトニアンとかラグランジアンというのが何なのかわからんとなると思う。

解析力学を先に勉強することが望ましいが、そうでないならまずはそれが何なのかということは考えずに純粋所与の法則として「ハミルトニアンという何かの量(作用素)があって、それによって物理的な系の"状態"がこういう規則で定まる」ということを受け入れて(ボルンルールとかも同様)、そういうものがあると認めたときにじゃあ何を議論しているのかというロジック理解することに注力するのがいいと思う。

2021-08-07

数学物理でびっくりした概念

数学物理大人になって学び直したら、「そんなことあるの?」とびっくりした概念を書いていく。

  

1位 ガウス驚異の定理

 地球儀を切り開いて、平面にしようとしても、2次元世界地図はできません。

 という定理

 3次元⇨2次元への距離を保った変換はできませんということを示しており、これを発展させた弟子リーマンが、「じゃあ、4次元から次元とか、もっと次元でも同じじゃない?」とリーマン幾何学を創出。後の相対性理論空間が曲がる)の記述へと繋がる。

  

2位 論理回路

 信号機とかのプログラム電気回路表現するにはどうすればいいのか?ということの理論

 4ビット信号(0101みたいなの)だと、16通り応答が必要となる。簡単に考えれば16通りの設計必要そうだけど、カルノー図を使った簡易化という謎のテクニックにより、なんとかなり簡単電気回路設計することができる。

  

3位 ラグランジアンハミルトニアン

 物理では、位置エネルギーとか運動エネルギーとか謎のエネルギーという量が出てくる。

 なんと、解析力学では、「謎のエネルギーの方が本質であり、運動とか位置とかはエネルギーから導かれる。エネルギーが先、運動位置が後」という理論

 式変形だけだと納得がいかないが、実験的に本当にそうらしい。

 人間理解に反するのがすごい。

  

4位 再起構文

 プログラムの話になってしまうけど。

 再起構文というのを書くと、ナルトの「多重影分身」みたいなプログラムが書けたりする。

 いまだに原理理解できていないけど、結果的にそうなってる。不思議すぎる。

  

5位 空間分解能(解像度)は光の波長の半分くらい

 写真とかどこまで拡大できるのか?の限界値を決める理論

 なんと、光の半分くらいまでしか画像を読み取ることができない。

 光以外にも、エコー超音波)で体の中を観れるけど、あれは超音波の波長が0.5mmとかなら、0.25mmまでの物しか判別できない。

 だから何?と思ったけど、半導体制作で「波長が短い(nm)の光を使って半導体を描くので、この理論を使います」とか、いろんなところでかなり効いてくる理論みたい

  

6位 5次以上の方程式の解の公式代数的な表現の)はない。(ガロア理論

 これは証明をぜひ追ってみて欲しい。

  

7位 フーリエ変換ラプラス変換。(工学

 簡単方程式が解けたり、異常な手続きで解けたりする。

 実際に、これらの手法提案されたとき数学的な記述ができなくて、「それ本当に成り立つの?なぜ?」ということで数学者が紛糾。

 人間直感てすごいなあとなる。

  

8位 フーリエ変換数学

 超関数理論

 自分も完全には理解できていないけど。

 ショーアの理論佐藤幹夫理論どっちも面白い

 量子力学とかも物理不安定理解が、数学的にどう不安定なのかが納得できる。

  

10位 ソリトン工学数学

 広田良吾先生工学的解法を、佐藤幹夫先生数学的に示すところが面白いので、是非是非。

 単なる偏微分方程式の解法から不思議現象が出てきて、工学的に謎解法が出てきて、数学的に完結される様子がドラマチック。

2021-06-29

anond:20210629123527

量子化と成分の分解とサンプリングが違うものというのはわかってる。

こういうmethodらを総称する名前が欲しいとしてあげた例示なんだ

それは存在しないぞ。少なくとも物理で言う意味での「量子化」は、サンプリングスペクトル分解とは全く違う構造

サンプリングスペクトル分解が同じではないかと思うあたりかなり鋭いかもしれないと思うので、何かを感じ取ってるのかもしれないけど、そこはもうちょっと詳細を聞かないと分からない。

物理で言う「量子化」の結果はハミルトニアンとか物理量ごとの(無限次元空間作用する)線形作用素が得られて、それは要は行列みたいなもんなので、そいつスペクトル分解というのはある。

からいわゆる「エネルギー準位の離散化」とかそういうものが出てくる。(いやもちろん連続スペクトル場合もあって、それは無限次元ヒルベルト空間の可分性とかに関わってるんだけど…

2021-04-28

ハミルトニアンがはみ出とるにゃん”

もしかして:ハミルトニアンがはみ出てるにゃん”

ハミルトニアンがはみ出とるにゃん”との一致はありません。

ハミルトニアンがはみ出てるにゃん”

ハミルトニアンがはみ出てるにゃん”との一致はありません。

2019-11-06

anond:20191106145303

はいー、そうだと思いますー、なにせ現職ですからー。>大学生初心者

でも大学生初心者には宮廷クラスでも難しいよーです。

特に工学部化学・生化系だとどう使うか、という方向にしか興味を抱かない人が多いし、ハミルトニアンとか出すと目が死にます

そういう人たちには元増田のような説明が受けますねー。

でもNMRのもの面白いんで、それを伝えたいんですけど、なかなか難しいですねー。

なにせ目に見えないし、いろんな「回転」が出てくるし、混乱しやすいみたいです。

2018-07-19

涌井貞美『図解・ベイズ統計「超」入門 (サイエンス・アイ新書)』

 評判よし。

一石賢『まずはこの一冊から 意味がわかるベイズ統計学』

涌井良幸『道具としてのベイズ統計学』

 手動かして学ぼうみたいな本らしい。

松原望『入門ベイズ統計意思決定理論と発展』

宮川公男著「基本統計学」でベイズに関する記述(数ページ)を頭にいれてから本書を読むと良い。

・最低でも、大学積分知識必要になり、ベータ分布正規分布積分表現計算くらいは当たり前のようにできないと読むのが難しい

ttps://www.udemy.com/pythonstan/

 よさそう

奥村晴彦『Rで楽しむベイズ統計入門』

 つなぎに。

豊田秀樹『基礎からベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門』

 StanとRが何となく分かってる必要があるらしい。

松浦健太郎StanとRでベイズ統計モデリング

 Stanまったく知らなくてもいけるらしい。

久保拓弥『データ解析のための統計モデリング入門――一般線形モデル階層ベイズモデルMCMC

 直感理解を大切にしてるらしい。通称緑本」。たけぇよ。行列積分知識が要るみたい。

C.M. ビショップ『入門ベイズ統計意思決定理論と発展』

 これがひとつのゴールみたいね

2014-09-29

http://anond.hatelabo.jp/20140929192020

D-waveマシンは単にイジンスピンアナログシミュレータなので、量子ビットとかあんま関係ない。

ジンスピンハミルトニアンを最小化するスピン配位を物理的に求めちまおうぜって話。メモリとかそういう問題じゃない。

(まあ、D-waveマシンも、エンタングルメント(非対角成分を持つ密度行列の状態)を本当に介してるのか、インチキなんじゃねーのか、というツッコミがあるっぽいけど。知らんけど)

2009-12-30

http://anond.hatelabo.jp/20091230123557

心理とかそれ系のことやってる論文読んでみな。

(もちろん全員とは言わないが)あいつら数学全くわかってないんじゃないかとすら思えることがある。

馬鹿の一つ覚えみたいにt検定しとけばいいと思ってんじゃねーよって感じ。

あと理論物理モデル適当さは凄いよ。現実的なモデル化しようとするとほとんど解けないからね。

物理は美しい自然が相手だから相当単純化しても本質を外さずに済むんだけど、社会はそうはいかないよね。

経済物理っぽく単純化した数理モデルにしようとすると経済物理みたいなことになるしw

2次式のポテンシャルを仮定した為替市場ハミルトニアンとかねww

2009-09-30

http://anond.hatelabo.jp/20090930172500

あらゆる場の量がゼロってことだよ。真空は。

真空準位の下に反粒子が詰まってて適当に量子効果で揺らいでるだけで、空間ハミルトニアンの最低固有値を持つ固有状態になってればそれが真空だろ。

2009-05-15

http://anond.hatelabo.jp/20090515131444

君の感覚の問題でもあるから「何故量子力学虚数が必要か」っつー話(の概略)に留まるけど、

量子力学の基本方程式ニュートン力学運動方程式電磁気学マクスウェル方程式みたいなもん)である

シュレディンガー方程式は、

i(h/2\pi)d/dt \psi = H \psi

という形をしてて(Hはハミルトニアンというある演算子)、時間について1階の微分項を含むわけだ。

1階の時間微分ってのは、古典物理世界では散逸に対応するんだな。摩擦とか。

そのままだとどうやっても散逸してエネルギー消失しちゃうんだ。

でも電子はいつまでも原子核のまわりを回ってて、全ての原子が潰れちゃうなんていう現象はこの宇宙では起こって無い。

じゃあどうするかっつーと、1階微分項の係数に虚数を使うしかないんだよ。

そういうものを考えてみると、これがびっくりするくらい実験とピッタリ合うし、未知の現象とかガンガン予測しちゃったんだな。

だからまあよくわかんねーけど正しいとしか思えない、という感じになってるわけだ。

2008-07-26

物理オタが非オタ彼女物理世界を軽く紹介するための10人

via : http://anond.hatelabo.jp/20080721222220

まあ、どのくらいの数の物理オタがそういう彼女をゲットできるかは別にして、

「オタではまったくないんだが、しかし自分のオタ趣味を肯定的に黙認してくれて、

 その上で全く知らない物理世界とはなんなのか、ちょっとだけ好奇心持ってる」

ような、ヲタの都合のいい妄想の中に出てきそうな彼女に、物理のことを紹介するために

見せるべき10人を選んでみたいのだけれど。

(要は「脱オタクファッションガイド」の正反対版だな。彼女物理布教するのではなく

 相互のコミュニケーションの入口として)

あくまで「入口」なので、時間的に過大な負担を伴うマニアックな人物は避けたい。

できれば伝記が出てる人物、少なくともブルーバックスレベルにとどめたい。

あと、いくら物理的に基礎といっても古びを感じすぎるものは避けたい。

物理好きが『ケプラー』は外せないと言っても、それはちょっとさすがになあ、と思う。

そういう感じ。

彼女の設定は

物理知識はいわゆる「ブルーバックス」的なものを除けば、中学校程度の物理は知ってる

サブカル度も低いが、頭はけっこう良い

という条件で。

まずは俺的に。出した順番は実質的には意味がない。

アルバート・アインシュタイン

まあ、いきなりかよとも思うけれど、「アインシュタイン以前」を濃縮しきっていて、「アインシュタイン以後」を決定づけたという点では

外せないんだよなあ。知名度もあるし。

ただ、ここでオタトーク全開にしてしまうと、彼女との関係が崩れるかも。

情報過多なアインシュタインの業績の数々について、特にリーマン空間上の時空の幾何学という数学的側面が強い一般相対論について、

どれだけさらりと、嫌味にならず濃すぎず、それでいて必要最小限の情報彼女

伝えられるかということは、オタ側の「真のコミュニケーション能力」試験としてはいいタスクだろうと思う。

アイザック・ニュートン

アレって典型的な「オタクが考える一般人に受け入れられそうな物理学者(そうオタクが思い込んでいるだけ。実際は全然受け入れられない)」そのもの

という意見には半分賛成・半分反対なのだけれど、それを彼女にぶつけて確かめてみるには

一番よさそうな素材なんじゃないのかな。

物理オタとしてはニュートン力学万有引力法則は“常識”としていいと思うんだけど、率直に言ってどう?」って。

スティーブン・ホーキング

ある種のSF物理オタが持ってる時空制御やタイムトラベルへの憧憬と、一方で時間順序保護仮説を唱えるオタ的な理論物理へのこだわりを

彼女に紹介するという意味ではいいなと思うのと、それに加えていかにもSFオタ的な

「一般相対論破綻」を記述する特異点定理

量子力学重力統合」を提唱する量子重力理論

の二つをはじめとして、オタ好きのする理論世界にちりばめているのが、紹介してみたい理由。

ジョン・フォン・ノイマン

たぶんこれを見た彼女は「モーツァルトだよね」と言ってくれるかもしれないが、そこが狙いといえば狙い。

これほどの変態的天才がその後続いていないこと、これがアメリカでは軍事への貢献で大人気になったこと、

数学から経済学までのあらゆる分野に影響を残した天才ぶりはアメリカなら実写テレビドラマになって、

それが日本に輸入されてもおかしくはなさそうなのに、

日本国内でこういう天才が生まれないこと、なんかを非オタ彼女と話してみたいかな、という妄想的願望。

ジェームズクラークマクスウェル

「やっぱり物理は目に見える自然現象を説明するためのものだよね」という話になったときに、そこで選ぶのは「アンリ・ナビエ」

でもいいのだけれど、そこでこっちを選んだのは、電磁気学にかけるマクスウェルの思いが好きだから。

(以下思いつかねえ)

レオンハルトオイラー

今の若年層でオイラーを目指す人はそんなにいないと思うのだけれど、だから紹介してみたい。

量子力学よりも前の段階で、力学現象を解析的に取り扱う哲学位相空間の技法は彼で頂点に達していたとも言えて、

こういうクオリティ物理学者数学者の片手間でこの時代に生まれていたんだよ、というのは、

別に俺自身がなんらそこに貢献してなくとも、なんとなく物理好きとしては不思議に誇らしいし、

いわゆるニュートン力学でしか物理を知らない彼女には見せてあげたいなと思う。

アマリー・エミー・ネーター

(還元論的)物理の「本質」あるいは「原理」をオタとして教えたい、というお節介焼きから見せる、ということではなくて。

「あらゆる基本的な物理量は保存する」的な感覚がオタには共通してあるのかなということを感じていて、

だからこそ理論物理学の最も基本的な量はハミルトニアン以外ではあり得なかったとも思う。

複雑系を取り扱う新しい物理」というオタの感覚今日さらに強まっているとするなら、その「オタクの気分」の

源はハミルトニアン(時間並進対称性に起因する保存量)にあったんじゃないか、という、そんな理屈はかけらも口にせずに、

単純に対称性と保存量の美しい関係を楽しんでもらえるかどうかを見てみたい。

エドワードウィッテン

これは地雷だよなあ。地雷が火を噴くか否か、そこのスリルを味わってみたいなあ。

こういう純粋数学チックな物理を元文系の天才物理学者が推進していて、それが非オタに受け入れられるか

気持ち悪さを誘発するか、というのを見てみたい。

リチャード・P・ファインマン

9人まではあっさり決まったんだけど10人目は空白でもいいかな、などと思いつつ、便宜的にファインマンを選んだ。

アインシュタインから始まってファインマンで終わるのもそれなりに収まりはいいだろうし、場の量子論以降の

素粒子物理時代の先駆けとなった人物でもあるし、紹介する価値はあるのだろうけど、もっと他にいい人物がいそうな気もする。

というわけで、俺のこういう意図にそって、もっといい10人目はこんなのどうよ、というのがあったら

教えてください。

「駄目だこの増田は。俺がちゃんとしたリストを作ってやる」というのは大歓迎。

こういう試みそのものに関する意見も聞けたら嬉しい。

10人は疲れるなこれ…。穴だらけだわ。そういう意味では元増田すげえな…。

ディラックとかハイゼンベルグとかシュレディンガーあたりを入れたかったが入らなかった。

あと湯川秀樹朝永振一郎も入れたかった。

2008-06-06

http://anond.hatelabo.jp/20080606195426

よーしじゃあ俺と一緒に理論物理勉強しようぜ!

美しいハミルトニアンではぁはぁしようぜー!

 
ログイン ユーザー登録
ようこそ ゲスト さん